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1. Introduction  
GECAD – Polytechnic of Porto –, in collaboration with Delft University, proposes the optimization of a centralized 

day-ahead energy resource management problem in smart grids under environments with uncertainty. Typically, 

the effect of uncertainty due to diverse factors (e.g., renewable generation or variable load consumption) is 

minimized or even ignored under the assumption that perfect (or highly accurate) forecast is available. However, in 

real-world applications, the effects of uncertainty cannot be neglected, and such assumption can lead to deviations 

that can compromise the entire system.  

In this competition, we develop a framework of the energy resource management problem [1],[2] that considers 

the uncertainty associated with renewable generation, load forecast errors, electric vehicle scheduling and market 

prices. The consideration of these sources of uncertainty in the formulation adds more complexity to an already 

challenging problem. 

This competition aims at the use of computational intelligence (CI) (e.g., evolutionary algorithms, swarm 

intelligence, search strategies) to solve the complex energy resource management problem under uncertain 

environments. 

Due to the importance of the energy resource management in the energy community, several mathematical 

formulations have been successfully proposed to solve the problem [3]. However, due to the very dynamic 

evolution of power systems in the last years and the transformation of electrical grids mainly due to the 

development of smart grid technologies, the traditional formulations, which were designed for a completely 

different scenario, sometimes cannot deal with the problem efficiently.  

It is in those situations, where traditional approaches fail, that CI has demonstrated being a very powerful tool. The 

test of CI and metaheuristics through competitions is not new in the scientific community. In fact, other 

competitions in the past in the energy domain have proved that CI is a competitive tool when near-optimal 

solutions are needed in short execution times [4]. 

Different from previous competitions proposed on the problem of energy resource management, in which the 

uncertainty of the environment is neglected, or it is assumed that a perfect forecast is available, we develop a 

framework closer to a real-world situation by introducing uncertainty regarding renewable generation, load 

forecast, EV scheduling and market prices. Our approach considers the generation of a high number of scenarios 

associated with those uncertainty sources. The consideration of different scenarios has an impact on the 

effectiveness of traditional approaches increasing the execution times dramatically. CI can tackle this issue by 

implementing the proper modifications to the existing algorithms or proposing ad-hoc techniques to deal with these 

types of problems. 

The WWCI 2018 competition on “Evolutionary Computation in Uncertain Environments: A Smart Grid Application” 

has the purpose of bringing together and testing the more advanced CI techniques applied to an energy domain 

problem, namely the energy resource management problem under uncertain environments. The competition 

provides a coherent framework where participants and practitioners of CI can test their algorithms to solve a real-

world optimization problem in the energy domain with uncertainty consideration, which makes the problem more 

challenging and worth to explore. 
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2. General description of the smart grid application 
The problem considers an energy aggregator with aims of procuring energy needs from distributed resources and 

the electricity market. The aggregator looks for the minimization of operational costs while making revenues from 

selling energy in available electricity markets. Moreover, it may use its own assets, e.g., energy storage systems 

(ESS), to supply the load demand. In addition, a V2G feature that allows the use of energy in the battery of electric 

vehicles (EV), is also possible. The energy aggregator establishes bilateral energy contracts with those who seek 

electricity supply, e.g., residential and industry customers. In this case, it is assumed that the aggregator does not 

make profits from the supply of energy to fixed loads and EVs charging. The main idea is that the optimization 

software can perform the energy resource scheduling of the dedicated resources in the day-ahead context for the 

24 hours of the following day.  

 
Figure 1 Overview of the aggregator energy management problem 

 

Since the aggregator performs the scheduling of resources for the day-ahead (i.e., the next 24 hours), it relays in the 

forecast of weather conditions (to predict renewable generation), load demand, EV trips, and market prices. 

However, the assumption of “perfect” or “highly accurate” forecast might bring catastrophic consequences into the 

operation of the grid when the realizations do not follow the expected predictions. 

Due to this situation, it is desired that the aggregator determines solutions that are robust to the uncertainty 

inherent in some parameters and the environment. Four aspects of uncertainty that affects the performance of a 

solution are considered in this competition, namely: a) Weather conditions, b) Load forecast, c) Planned EVs’ trips, 

and d) Market prices. 

Therefore, the aggregator should find solutions that provide not only an optimal (or near-optimal) value of 

operational costs but also those solutions must have the characteristic of being as less sensible as possible to the 

variations of the uncertain parameters. In [5], uncertainty in evolutionary computation is classified into four 

categories, namely noise, robustness, fitness approximation and time-varying fitness functions. This competition 

lays in the category of robustness, in which the design variables (or environmental parameters in this particular 

case) are subject to perturbations or changes after the optimal solution has been determined (i.e., the realizations 

of uncertain parameters).  

To incorporate the uncertainty of parameters, we use Monte Carlo simulation (MCS) to generate a large number of 

possible scenarios using probability distribution functions of the forecast errors (obtained from historical data). A 

high number of scenarios increases the accuracy of the model but comes with a computations cost associated with 

a large number of variations in the parameters. Due to this, a reduction technique [1] is used to maintain a 

reasonably small number of scenarios while keeping the main statistical characteristics of the initial scenarios’ set. 

In the next section, we present the mathematical formulation of the problem, which provides a clear idea of the 

optimization problem that is solved in this competition.  
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3. Metaheuristic simulator framework 
In this competition, the method of choice used by the participants to solve the problem must be a metaheuristic-

based algorithm. The framework adopted in the competition is described in this document and follows the structure 

presented in Figure 2.  

A. CallMH.m (main Function)

Load case study

(Encrypted)

Set algorithm parameters

(by the USER)

Set other parameters
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Set variable bounds
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Figure 2 General framework of the simulation platform 

 

The simulation platform has been implemented in MATLAB© 2016 64-bit, and consists of different scripts with 

specific targets in the simulation. As shown in Figure 2, some scripts correspond to encrypted files provided by the 

organizers (blue color in the figure). The user only needs to implement two scripts (see Sect. 4.A.2 and Sect. 4.A.6), 

namely: 

i. one script for setting the parameters required by their algorithm (A.2). 

ii. a second script for the implementation of their proposed solution method (A.6).  

Examples of how to implement these two script functions, and how the organizer’s scripts work on the platform, 

are provided in Sect. 4. 

Before of the guidelines for participants, we provide additional information on the encoding of the solutions, 

assumptions and some notes on the implementation of the problem below. 

3.A) Encoding of the individual 
The solution structure (e.g., an individual in DE, a particle in PSO, or genotype in GA) is a fundamental part of the 

metaheuristics to represent a given solution. The solution representation adopted in this competition follows the 

vector representation showed in Figure 3. 
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Figure 3 Solution representation. 

 

Each solution is encoded therefore as a vector with ‘6’ groups of variables that are repeated sequentially across the 

24 periods (hours) of optimization. In the vector representation, all variables, apart from group (2), are continuous 

variables with bounds matching the power or capacity limits of the associated variables. Group (2), generator 

binaries, corresponds to binary variables that are used to indicate if a generator is connected (‘1’ value) or 

disconnected (‘0’ value). Binaries variables might also present a continuous value since the fitness function 

internally correct their value using a simple round operation. 

A special attention is pointed to group (1). That group belongs to variables of distributed generation (DGs). It is 

important to noticed that DGs include not only dispatchable generators but also PV generation. However, PV 

generation cannot be controlled, so even when it is part of the vector solution, the variable corresponding to PV 

generation (las variable of group (1)) will take a specific, and thus unalterable, value depending on the considered 

scenario.  

3.B) Fitness function and uncertainty 
The fitness function 𝑓′ considers the objective 𝑍 of the aggregator (see Appendix section, Eq. (7)), plus the 

summation of the penalties found during evaluation of the solutions:  

𝑓′(𝑋⃗) = 𝑍 + 𝜌∑max⁡[0, 𝑔𝑖]

𝑁𝑐

𝑖=1

 

 

(1) 

where 𝑋⃗ is a solution that follows the structure showed in Figure 3. In this case, 𝑔𝑖 is the value of the 𝑖th constraint 

(equality or inequality) and 𝜌 is a configurable penalty factor (usually, a high value is considered). See sect. 4.B for 

instructions regarding fitness function and how penalties work. 

In this competition, we consider uncertainty in some parameters that modify the value of the fitness function 

according to different scenarios generated by Monte Carlo simulation. The fitness function value is modifying by 

perturbation as follows: 

𝐹𝑠(𝑋⃗) = 𝑓′(𝑋⃗ + 𝛿𝑠) 
 

(2) 

where 𝛿𝑠 is the disturbance of variables and parameters in scenario 𝑠, and 𝐹𝑠(𝑋⃗) is the fitness value associated to 

the⁡𝑠 Monte Carlo sampling. Therefore, an expected mean value for a given solution over the set of considered 

scenarios can be calculated as: 

𝜇𝐹𝑆(𝑋⃗) =
1

𝑁𝑠
∙∑𝑓′(𝑋⃗ + 𝛿𝑠)

𝑁𝑠

𝑠=1

 

 

(3) 
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Similarly, the standard deviation of a solution over the set of scenarios can be calculated as: 

𝜎𝐹𝑆(𝑋⃗) = √
1

𝑁𝑠
∙∑(𝑓′(𝑋⃗ + 𝛿𝑠) − 𝜇𝐹𝑆(𝑋⃗))

2
𝑁𝑠

𝑠=1

 

 

(4) 

 

Eqs. (3) and (4) depends on the number of scenarios considered in the evaluation. As we will show below, the 

fitness function in the optimization process receive as a parameter the number of scenarios that the competitor 

wants to evaluate. However, keep in mind that for the final evaluation (See Sect. 5), the solutions will be evaluated 

through the total number of scenarios (100 for the competition). 

Figure 4 shows a schematic representation of the fitness function. We developed the fitness function as a black box 

as shown in Figure 4(a) (it is an encrypted function) that receives as input arguments an array with the solutions, the 

information of the case study, some additional parameters, and the number of scenarios that the user wants to 

evaluate (a maximum of 100 scenarios is considered).  The function returns an array with the fitness values of the 

entire population over a randomly selected subset of scenarios (see sect. 5.B for details on the implementation of 

this function). 

Figure 4(b) shows the internal operation of the fitness function, which randomly selects 𝑁𝑒𝑣𝑎𝑙𝑆 scenarios (𝑁𝑒𝑣𝑎𝑙𝑆 is a 

parameter specified by the user) from the 𝑁𝑠 available ones. Notice from Figure 4(b) that the actual number of 

function’s evaluations depends on the size of the population to evaluate, and the number of scenarios that the user 

wants to consider each time that the fitness function is called. The number of functions evaluations is therefore: 

𝑁𝐹𝐸 = 𝑁𝑠𝑜𝑙 ∗ 𝑁𝑒𝑣𝑎𝑙𝑆 
 

(5) 

A maximum number of 50,000 function evaluations is allowed in the competition. Consider that each iteration of 

your algorithm could perform a variable number of function evaluations according to the number of times that the 

fitness function is called and Eq. (5). 

Fitness Function
Black Box

fitnessFun_DER_WCCI

Solutions

CaseStudyData

otherParameters

No.Scenarios to eval

Output

solFitness_M

Sol_Penalties_M

otherParameters

 
(a) 

 

Fitness Function
Black Box Scenario 1

Scenario 2

Scenario 3

Scenario Ns

Input:

Solutions

matrix

Randomly 
select

N scenarios

Scenario 4

Fitness 

evalutaion

Output:

Fitness

Matrix

Size 

NPxselected 

scenarios

Fitness 

evalutaion

Fitness 

evalutaion

Fitness 

evalutaion

Fitness 

evalutaion

 
(b) 

Figure 4 Fitness function. a) Black box. b) Internall functioning. 
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3.C) Some assumptions of the energy scheduling problem: 
1. The aggregator minimizes operational costs while maximize its profits (costs minus income) 

2. Electric vehicles can be controlled continuously (between 0 and max charge rate) 

3. The same assumption applies to the V2G principle (between 0 and max discharge rate) 

4. The stationary batteries or Energy Storage Systems (ESS) can be controlled continuously similar to the EVs/V2G 

5. The cost function of DG units is assumed to be linear 

6. It is assumed that the energy aggregator can submit bids and asks to the electricity market. 

7. The markets in which the aggregator participates have different limits for bid and asks 

8. Two markets are considered corresponding to wholesale and local markets 

9. 5000 reduced to 100 scenarios are generated to simulate uncertainty of EVs travels, PV generation, load 

variations, and market prices 

 

3.D) Some notes on the implementation of the problem: 
1. Internally in the fitness function, it is assumed that the charge/discharge variables for the EVs are the same, but 

positive values for charge and negative values for discharge to save computational memory 

2. The same principle described above for EV applies for the ESS variables 

3. Internally, the market value is positive for an offer (sale) and negative for a buy bid 

4. Binary variables are always rounded internally in the objective function 

5. Direct repair of solution is used in the fitness function (see section 0) 

6. The fitness function internally selects a random subset of the available 100 scenarios each time the function is 

called. 

A maximum number of 50,000 evaluations is allowed in the competition. Take into account that it is not the same as 

algorithm iterations, and that each time the fitness function is evaluated, the actual number of function’s 

evaluations varies according to Eq. (5). 

3.E) Scenario overview 
This section briefly describes the case study prepared for the competition, which is based on a 25-bus microgrid that 

represents a residential area with 6 DGs (5 dispatchable units and 1 PV generator), 1 external supplier, 2 ESSs, 34 

EVs, and 90 loads with demand response capability. Moreover, it is considered that two markets (wholesale and 

local) are available for buy/sale of energy. Table 1 outlines the resources available in the MG. 

Table 1. Available Energy Resources 

Energy resources Prices (m.u./kWh) Capacity (kW) Units 

Dispatchable DGs 0.07-0.11 10-100 5 

External suppliers 0.074-0.16 0-150 1 

ESS 

Charge - 0-16.6 

2 Discharge 0.03 0-16-6 

EV 

Charge - 0-111 

34 Discharge 0.06 0-111 

DR curtailable loads 0.0375 4.06-8.95 90 

Forecast (kW) 

Photovoltaic - 0-106.81 1 (17 agg) 

Load - 35.82-83.39 90 

Limits (kW) 

Market 1 (WS) 0.021-0.039 0-85 1 

Market 2 (LM) 0.021-0.039 0-40 1 

 
Uncertainty (generation of scenarios) 

For the competition, we created 5000 scenarios for PV generation, load consumption and market price variations. 

For the PV uncertainty generation, an error of 15% was used. Regarding the load forecasted and market prices, 

errors of 10% and 20% were used respectively. In a second step, the number of scenarios was reduced to 100 using 

specialized reduction techniques [7]. Regarding EVs trips, we have randomly generated 100 different forecast 

scheduling for each scenario using the tools in [8]. Figure 5 shows graphically the generated scenarios. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5 Fitness function. a) PV generation. b) Load forecast. c) Wholesale market. d) Local market. 
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4. Guidelines for participants 
These instructions include as example the metaheuristic differential evolution (DE) [2] implemented and adapted to 

the energy resource management (It has been modified by GECAD). 

It is important that the participants use the following recommendations and structure to avoid issues in using the 

supplied datasets and codes. 

4.A) mainWCCI_SG_2018.m - Master function/script 
# mainWCCI_SG_2018.m is the main file for the competition. The competitors can modify this main script as 
needed. Nevertheless, it is worth noting that this main script is ready to use. Participants should only include their 

functions (e.g., A.2-MHparameters.m and A.3-MHalgorithm.m) to perform the optimization of the problem. 

 
mainWCCI_SG_2018.m 
clear;clc;close all; tTotalTime=tic; % lets track total computational time 

noRuns = 2; % Number of trials here 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Load Data base  

caseStudyData=callDatabase(2);% No.Scenarios: (1) 10 (2) 100 

             

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Load MH parameters (e.g., get MH parameters from DEparameters.m file) 

algorithm='DE_rand'; %'The participants should include their algorithm here' 

DEparameters %Function defined by the participant 
No_solutions=deParameters.I_NP; % Number of solutions used in the MH 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Set other parameters 

otherParameters =setOtherParameters(caseStudyData,No_solutions); 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Set lower/upper bounds of variables  

[lowerBounds,upperBounds] = setVariablesBounds(caseStudyData,otherParameters); 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Some parameters that can be modified by the user 

otherParameters.DirectMEthod=2; %1:without direct repair 2:With direct repairs (No 

violations guarantee) 

otherParameters.ensPenalty=100; %Penalty factor:insufficient generation / energy not 

supplied 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Call the MH for optimization 

ResDB=struc([]); 

    for iRuns=1:noRuns %Number of trails 

        tOpt=tic; 

        rand('state',sum(noRuns*100*clock))% ensure stochastic indpt trials 

 

            [ResDB(iRuns).Fit_and_p, ...  
             ResDB(iRuns).sol, ... 

             ResDB(iRuns).fitVector, ... 

             ResDB(iRuns).Best_otherInfo] =... 

             deopt_simple(deParameters,caseStudyData,otherParameters,lowerB,upperB); 
   

        ResDB(iRuns).tOpt=toc(tOpt); % time of each trial 

 

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        %% Save the results and stats 

        Save_results 

    end  

tTotalTime=toc(tTotalTime); %Total time 

%% End of MH Optimization 

 
As it can be seen, the main script follows the structure from Figure 2 (Sect. 3). Details in the implementation of each 
part of the code are given next. 
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A.1 - #callDatabase.m - Loading the case study datasets 
# callDatabase.m (encrypted) – This is an encrypted function to load the caseStudyData struct with all the relevant 
dataset information. Participants do not need to worry about the content of the case study and loading the files. “It 
is already done in the encrypted function”. The participants, however, might want to change the argument to (2) to 
load a light version of the case study with only 10 scenarios. Argument (1) load the case study with 100 scenarios, 
which should be used in the competition for assessment of the results. The actual loading file is encrypted. The data 
set struct is caseStudyData. 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Load Data base  

caseStudyData=callDatabase(1); 

% No.Scenarios: (1) 100 scenarios 

                (2) 10 scenarios 

 

A.2 - #DEparameters.m - Set parameters of the metaheuristic 
# DEparameters.m file – This function file must be specific to the metaheuristic implemented by the participant. 
This is just an example using DE to show how participants should implement this function with all the parameters 
related to their algorithm. 
 
deParameters.I_NP= 12; % Size of the population in DE 

deParameters.F_weight= 0.3; %Mutation factor 

deParameters.F_CR= 0.5; %Recombination constant 

deParameters.I_itermax= 100; % number of max iterations/gen 

deParameters.I_strategy   = 1; %DE strategy 

  

deParameters.I_bnd_constr = 1; %Using bound constraints  

% 1 repair to the lower or upper violated bound  

% 2 rand value in the allowed range 

% 3 bounce back 

 

A.3 - #setOtherParameters.m - Set other necessary parameters and struct 
# setOtherParameters.m (encrypted) – This file is encrypted and should not be changed or modified by the user. It 
just sets parameters and data needed for the fitness function to work. It is a mandatory function that creates a 
struct “otherParameters” and should be run as illustrated in main function section: 
 
%% Set other parameters 

otherParameters =setOtherParameters(caseStudyData,No_solutions); 

 

Participants must pass the “otherParameters” struct as argument to the functions: 
 
[lowerBounds,upperBounds] = setVariablesBounds(caseStudyData,otherParameters); 

[solFitness_M,solPenalties_M, temp] = 

fitnessFun_DER_WCCI(solutions,caseStudyData,otherParameters,No_eval_Scenarios) 

 

A.4 - #setVariablesBounds.m - Set bounds of variables 
# setVariablesBounds.m (encrypted) – This file is encrypted and should not be changed or modified by the user. It 
just sets the bounds of the problem variables: 
 
%% Set lower/upper bounds of variables  

[lowerBounds,upperBounds] = setVariablesBounds(caseStudyData,otherParameters); 

 

The outputs of this function “[lowerBounds,upperBounds]” – should be used by your algorithm to generate the 
initial solutions and to validate if the bounds are being respected in each iteration.  
 
The order of the variables in the implemented codes cannot be modify for the proper functioning of the fitness 
function. The structure of the solution is indicated in Sect. 3.A of this document 
 
The following parameters are used to identify the ids of each type of variables. These “ids” are used to locate the 
type of variables in the solutions matrix (ids correspond to the columns while individuals to the rows).  
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otherParameters.ids.idsGen 

otherParameters.ids.idsXGen 

otherParameters.ids.idsV2G 

otherParameters.ids.idsLoadDR 

otherParameters.ids.idsStorage 

otherParameters.ids.idsMarket 

Example of use: 
periods = caseStudyData.parameterData.numPeriods; 

nParticles = size(solutions,1); %Number of population (solutions) 

nVariables = size(solutions,2); %Number of variables (dimension) 

idsV2G= otherParameters.ids.idsV2G; 

getPeriod = 2; % Period 2 used to illustrate this example  

tempIds=idsV2G+(nVariables/periods)*(getPeriod-1); 

solutions(:,tempIds) % EVs variables for period 2, all individuals 

solutions(2,tempIds) % EVs variables for period 2, second individual 

 
 

A.5 - Modifying some settings 
If the participant wants to change the default assigned penalties regarding constraint violations, please add these 
lines and change the value accordingly. A tweak is accepted in the competition as some optimal penalties (i.e., 
penalties that adapt during the optimizations) may be suggested by the participants. These penalties should be 1 or 
higher or the fitness function will not accept it. If you don’t want to change the default penalties just remove those 
lines from the master. Default penalty is 100 per each violation found. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Some parameters that can be modified by the user 

otherParameters.DirectMEthod=2;  

%1:without direct repair  

%2:With direct repairs (No violations guarantee) 

otherParameters.ensPenalty=100;  

% Penalty factor:insufficient generation / energy not supplied 

 

 

A.6 - #deopt_simple.m - Algorithm proposed by the competitor 
The participants should generate a scrip called #MHalgorithm.m or similar. This algorithm should replace 

#deopt_simple.m which is provided as example: 

[ResDB(iRuns).Fit_and_p, ... 

 ResDB(iRuns).sol, ... 

 ResDB(iRuns).fitVector, ... 

 ResDB(iRuns).Best_otherInfo] =... 

 deopt_simple(deParameters,caseStudyData,otherParameters,lowerB,upperB); 

 

Your metaheuristic should receive as input parameters: 

1. deParameters: struct with the parameters configuration for your algorithm to work (it is generated by the user) 

2. caseStudyData: struct with the information of the case study 

3. otherParameters: struct with additional information required by the fitness function 

4. lowerB/upperB: lower and upper bounds of variables 

Your metaheuristic code should return to the main script the following variables:  

1. ResDB(iRuns).fit_and_p: array of size 1x2 with the best fitness and penalties values 

2. ResDB(iRuns).sol: vector of size: 1 x noVariables with the best candidate solution found by your algorithm 

3. ResDB(iRuns).fitVector: array of size: 2xnoIterations with the value of the fitness and penalties over the 

iterations. 

4. ResDB(iRuns).Best_otherInfo: Struct with additional information of the best individual (see sect. ()). 

The participants are encouraged to save the results of each trial/run in a struct “ResDB”, as shown in the example. 

That will ease the evaluation process by the organizers. 

A.7 - #Save_results.m - Benchmark results (text-files) 
#Save_results.m (encrypted) – The output is written to text-files using this script. The following tables should be 

produced: 
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Table 1. Table_Time: Computing time spent for all optimization trials (benchmark_Time.txt) 

 timeSpent (s) 

Run1  
Run2  
Run3  

…  
Run20  

 

Table 2. Table_Fit: Individual benchmark of the trials (benchmark_Fitness.txt) 

 AvgFit StdFit MinFit MaxFit varFit ConvergenceRate Penalties 

Run1        
Run2        
Run3        

…        
Run20        

 

Table 3. Table_TrialStats: Summary statistics or the trials (benchmark_Summary.txt) 

Ranking 
Index 

Average 
Standard 
deviation 

Minimum Maximum Variance Code 

RankingIndex PAvgFit PstdFit PminFit PmaxFit PvarFit validationCode 

 

In addition, this function should automatically generate the file “Send2Organizer.mat”, 
which should include the best solutions found in each of the trials. That file will be used to 
double-check the reported results by validating all the solutions contained there over the 100 
scenarios of the case study. For that reason, it is important that the participants put special 
care in returning the best solutions from their algorithms and stored in “ResDB.sol” (see 
Sect. 4.A.6).  
 

To clarify, the “Send2Organizer.mat” file will include a matrix called “solutions” with the 
solutions stored in “ResDB.sol”. The solutions there will be evaluated according to Sect. 5 
in order to double check the ranking index of each participant. The lower the ranking index, 
the better the performance of a participant. 
 
*A number 20 trials should be made. 

*50,000 evaluations per trial should be made. 

 

4.B) Fitness function evaluation 
# fitnessFun_DER_WCCI.m (encrypted) – this is the fitness function to be used by participants: 

function [solFitness_M,solPenalties_M, ExtraInfo] = 

fitnessFun_DER_WCCI(solutions,caseStudyData,otherParameters,No_eval_Scenarios) 

 

The function receives as input: 

1. solutions: matrix of size 𝑁𝑠𝑜𝑙×𝐷, in which 𝑁𝑠𝑜𝑙 (rows) represents the number of individuals/solutions in an 

array, and 𝐷 (columns) represents the dimension (i.e., number of variables) of the optimization problem. This 

variable should be encoded in the metaheuristic algorithm proposed by participants (e.g., #MHalgorithm.m, 

Sect. 4.A.6). Only 1 individual is also possible (one row). 

2. caseStudyData: struct with data of the case study with all the scenarios (100 for this competition) as loaded by 

callDatabase function (i.e., #callDatabase.m, Sect. 4.A.1). 

3. otherParameters: Struct with additional information as loaded by #setOtherParameters.m Sect. 4.A.3). 

4. 𝑵𝒆𝒗𝒂𝒍𝑺: The user can specify how many scenarios, from the available 100 in the case study, wants to evaluate. 

The fitness function selects randomly a subset of “𝑵𝒆𝒗𝒂𝒍𝑺” from the total scenarios (See Sect 3.B). 

 The function returns as output: 
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1. 𝒔𝒐𝒍𝑭𝒊𝒕𝒏𝒆𝒔𝒔𝑴: Matrix of size 𝑁𝑠𝑜𝑙×𝑁𝑒𝑣𝑎𝑙𝑆, in which 𝑁𝑠𝑜𝑙  (rows) represents the number of individuals and 𝑁𝑒𝑣𝑎𝑙𝑆 

(columns) represents the number of evaluated scenarios. This matrix includes the fitness values of the solutions 

across different scenarios. 

 
Figure 6 Example of 𝒔𝒐𝒍𝑭𝒊𝒕𝒏𝒆𝒔𝒔𝑴. Fitness of 𝑵𝒔𝒐𝒍 = 𝟓 individuals over 𝑵𝒆𝒗𝒂𝒍𝑺 = 𝟔 scenarios. 

 

2. 𝒔𝒐𝒍𝑷𝒆𝒏𝒂𝒍𝒕𝒊𝒆𝒔𝑴: Matrix of size 𝑁𝑠𝑜𝑙×𝑁𝑒𝑣𝑎𝑙𝑆, in which 𝑁𝑠𝑜𝑙 (rows) represents the number of individuals and 

𝑁𝑒𝑣𝑎𝑙𝑆s (columns) represents the number of evaluated scenarios. This matrix includes the penalty values of the 

solutions across different scenarios. (If direct repair is used, the penalties are always zero). 

 
Figure 7 Example of 𝒔𝒐𝒍𝑷𝒆𝒏𝒂𝒍𝒕𝒊𝒆𝒔𝑴. Fitness of 𝑵𝒔𝒐𝒍 = 𝟓 individuals over 𝑵𝒆𝒗𝒂𝒍𝑺 = 𝟔 scenarios. 

 

3. ExtraInfo: Struct with additional valuable information captured during the evaluation phase.  

 
Figure 8 Example output of ExtraInfo struct returned by #fitnessFun_DER.m 

 

The #fitnessFun_DER_WCCI.m evaluates all the population at once. Notice that the criterion to select the winner in 

this competition will be the average value over the total 100 scenarios plus the standard deviation (see Sect. 5). 

However, selecting 100 scenarios each time that a solution is evaluated will increase the computational cost and the 

number of fitness functions evaluations (see Sect. 3.B) which has a limit of 50000. 

 

B1. Direct repair of solutions: 
The #fitnessFun_DER_WCCI.m as some mechanisms to provide a fast convergence of the solutions, namely direct 

repair of solutions. This means that the solutions returned by the function are changed if some constraints are not 

satisfied according to a heuristic mechanism. Some notes are explained: 

1. Charge/discharge rates of EVs/ESS are adjusted considering the energy remaining the battery and the maximum 

capacity of the batteries (no need for penalties, as the correction are guaranteed). 

2. direct repair balance: the demand/generation balance is made using a merit sort process and using the market 

to guarantee balance. 



15 
 

We have included the option of deactivate direct repair balance. The participant can control whether to use this 

feature by modifying line 28 in the main scrip: 

         %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

         %% Some parameters that can be modified by the user 

Line 28: otherParameters.DirectMEthod=2;  

         %1:without direct repair  

         %2:With direct repairs (No violations is guaranteed) 

         otherParameters.ensPenalty=100;  

         % Penalty factor:insufficient generation / energy not supplied 

 

Note: For the validation of results, organizers will perform fitness evaluations always considering direct repair 

balance, i.e., otherParameters.DirectMEthod=2 will always set to this value. 

B2. Best solution and storing additional information 
Since #fitnessFun_DER_WCCI.m does not return a single value associated to an individual, but the evaluation of 

individuals across scenarios, the participants should select a criterion to determine which is the best individual in 

their population, or how they want to perform the search. The criteria for selecting the best individual could vary 

from worst-case performance, mean fitness value, best fitness value, etcetera. Here, we provide an example of 

selecting the best individual based on the worst-case performance: 

[solFitness_M, solPenalties_M,Struct_Eval]= 
fitnessFun_DER_WCCI(solutions,caseStudyData,otherParameters,No_eval_Scenarios); 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% The user should decide which is the best criterion to optimize.  

% In this example, we optimize worst-case performance 

[S_val, worstS]=max(solFitness_M,[],2); %Find worst-case performance 

[~,I_best_index] = min(S_val); %Select the best amount the worst-case performances 

 

FVr_bestmemit = FM_pop(I_best_index,:); % best member of current iteration 

 

 

In your MH function, please add some code like the one provided below after determining the best candidate 

solution: 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% store other information 

Best_otherInfo.idBestParticle = I_best_index; 

Best_otherInfo.genCostsFinal = 

Struct_Eval(worstS(I_best_index)).otherParameters.genCosts(I_best_index,:); 

Best_otherInfo.loadDRcostsFinal = 

Struct_Eval(worstS(I_best_index)).otherParameters.loadDRcosts(I_best_index,:); 

Best_otherInfo.v2gChargeCostsFinal = 

Struct_Eval(worstS(I_best_index)).otherParameters.v2gChargeCosts(I_best_index,:); 

Best_otherInfo.v2gDischargeCostsFinal 

=Struct_Eval(worstS(I_best_index)).otherParameters.v2gDischargeCosts(I_best_index,:); 

Best_otherInfo.storageChargeCostsFinal = 

Struct_Eval(worstS(I_best_index)).otherParameters.storageChargeCosts(I_best_index,:); 

Best_otherInfo.storageDischargeCostsFinal = 

Struct_Eval(worstS(I_best_index)).otherParameters.storageDischargeCosts(I_best_index,:); 

Best_otherInfo.stBalanceFinal = 

Struct_Eval(worstS(I_best_index)).otherParameters.stBalance(I_best_index,:,:); 

Best_otherInfo.v2gBalanceFinal = 

Struct_Eval(worstS(I_best_index)).otherParameters.v2gBalance(I_best_index,:,:); 

Best_otherInfo.penSlackBusFinal = 

Struct_Eval(worstS(I_best_index)).otherParameters.penSlackBus(I_best_index,:); 

 

 

indexbest is the index for the best candidate solution (determined by the participant according to the preferred 

method). Please store indexbest in Best_otherInfo.idBestParticle.  
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5. Evaluation guidelines 
A ranking index will be calculated using the 20 final solutions (one for each trial) provided by each participant. With 

these solutions, the organizers will calculate the ranking index (𝑅𝐼𝑢𝑠𝑒𝑟) for each participant 𝑎 based on the average 

fitness and standard deviation of each solution across the 100 scenarios: 

𝑅𝐼𝑢𝑠𝑒𝑟(𝑎) =
1

𝑁𝑡𝑟𝑖𝑎𝑙𝑠
∙ [ ∑ (𝜇𝐹𝑆𝑎(𝑋⃗𝑖) + 𝜎𝐹𝑆𝑎(𝑋⃗𝑖))

𝑁_𝑡𝑟𝑖𝑎𝑙𝑠

𝑖=1

] 

 

(6) 

where 𝜇𝐹𝑆𝑎(𝑋⃗𝑖) and 𝜎𝐹𝑆𝑎(𝑋⃗𝑖) are functions that return the average value and standard deviation of the solution 

found in trial 𝑖 (i.e., 𝑋⃗𝑖) by participant 𝑎 across the 100 considered scenarios (See Sect. 3.B). 

Therefore, the winner of the competition will be the one that gets the minimum value of 𝑅𝐼𝑢𝑠𝑒𝑟 . 

The participants must consider this criterion while selecting the best search strategy in their algorithms. 

With this performance measurement, we are considering not only the best mean expected value, but 

also the robustness of the solution.  

6. Material to be submitted to the organizers 
For the validation of the results, the 3 benchmark text files and the “Send2Organizer.mat” file produced 

by # Save_results.m (see Sect. 4.A.7) should be submitted to the organizers. The implementation codes of each 

algorithm entering the competition must also be submitted along with final results for full consideration in the 

evaluation. The submitted codes will be used for further tests, which are intended to crosscheck the submitted 

results. The submitted codes will be in the public domain and no intellectual property claims should be made. 

Each participant is kindly requested to put the text files corresponding to final results, as well as the implementation 

files (codes), obtained by using a specific optimizer, into a zipped folder named  

WCCI2018_SG_AlgorithmName_ParticipantName.zip  

(e.g. WCCI2018_SG_DE_Lezama.zip). 

 

The zipped folder must be summited to flzcl@isep.ipp.pt and joaps@isep.ipp.pt  

by 15th May 2018 

 

  

mailto:joaps@isep.ipp.pt
mailto:joaps@isep.ipp.pt
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Appendix: Mathematical formulation 
We divide this section in three parts for better understanding: A) Objective function, B) Constraints of the problem, 

and C) Uncertainty modelling. 

A) Objective function 
The envisaged problem can be modelled as a combinatorial Mixed-Integer Linear Programming (MILP) problem due 

to the presence of a high number of continuous, discrete and binary variables. The objective of the aggregator is to 

minimize operational costs (𝑂𝐶) while maximizing incomes (𝐼𝑛). This can be rewritten as minimization function Z: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒⁡𝑍 = 𝑂𝐶 − 𝐼𝑛 (7) 

The minimum value of 𝑍 is the total cost (or profits if negative) for the energy aggregator. Therefore, the goal in 

optimization terms is to obtain the minimum value of 𝑍 in the metaheuristics form. 

The aggregator looks for the minimization of the operational costs (𝑂𝐶) associated with the management of 

resources as follows: 

𝑂𝐶 =

∑∑𝑃𝐷𝐺(𝑖,𝑡) ∙ 𝐶𝐷𝐺(𝑖,𝑡)

𝑁𝐷𝐺

𝑖=1

𝑇

𝑡=1

+∑∑𝑃𝑒𝑥𝑡(𝑘,𝑡) ∙ 𝐶𝑒𝑥𝑡(𝑘,𝑡)

𝑁𝑘

𝑘=1

𝑇

𝑡=1

∑∑

(

 
 
 
 
 
 
 ∑ 𝑷𝑷𝑽(𝒋,𝒕,𝒔) ∙ 𝐶𝑃𝑉(𝑗,𝑡)

𝑁𝑃𝑉−𝐷𝐺

𝑗=1

+∑𝑷𝑬𝑺𝑺−(𝒆,𝒕,𝒔) ∙ 𝐶𝐸𝑆𝑆−(𝑒,𝑡)

𝑁𝑒

𝑒=1

∑𝑷𝑬𝑽−(𝒗,𝒕,𝒔) ∙ 𝐶𝐸𝑉−(𝑣,𝑡)

𝑁𝑣

𝑣=1

+∑𝑷𝒄𝒖𝒓𝒕(𝒍,𝒕,𝒔) ∙ 𝐶𝑐𝑢𝑟𝑡(𝑙,𝑡)

𝑁𝐿

𝑙=1

∑𝑷𝒊𝒎𝒃−(𝒍,𝒕,𝒔) ∙ 𝐶𝑖𝑚𝑏−(𝑙,𝑡)

𝑁𝐿

𝑙=1

+∑𝑷𝒊𝒎𝒃+(𝒊,𝒕,𝒔) ∙ 𝐶𝑖𝑚𝑏+(𝑖,𝑡)

𝑁𝐷𝐺

𝑖=1 )

 
 
 
 
 
 
 

𝑇

𝑡=1

𝑁𝑠

𝑠=1

∙ 𝜋(𝑠)

 

 

(8) 

 

Eq. Error! Reference source not found. considers the cost associated with Distributed Generation (DG), external 

suppliers, discharge of ESS and EVs, DR by direct load control programs (curtailable loads), penalization of non-

supplied demand (negative imbalance) and penalization for excess of DG units’ generation (positive imbalance).1 

On the other hand, the aggregator can receive its incomes (In) from market transactions as follows: 

𝑀𝑇 =∑∑(∑(𝑃𝑏𝑢𝑦(𝑚,𝑡) − 𝑃𝑠𝑒𝑙𝑙(𝑚,𝑡)) ∙ 𝑀𝑃(𝑚,𝑡,𝑠)

𝑁𝑚

𝑚=1

) ∙ 𝜋(𝑠)

𝑇

𝑡=1

𝑁𝑠

𝑠=1

 

 

(9) 

 

where offers and bids are allowed in two markets with distinctive characteristics, namely wholesale and local 

markets.Error! Bookmark not defined. 

B) Constraints of the problem 
The problem constraints are similar to [6]. The problem is mainly constrained by the energy balance constraint (Eq. 

8), DG generation and supplier limits in each period, ESS capacity, charge and discharge rate limits, EVs capacity, 

EVs’ trips requirements, charge and discharge efficiency and rate limits. For the competition, to simplify the 

problem we have neglected the network constraints regarding reactive powers balance, voltage and angle limits. 

The main constraint to fulfill in the formulation is the active power balance constraint which states that the amount 

of generated energy should be equal to the amount of consumed energy at every instant 𝑡: 

∑𝑃𝐷𝐺(𝑖,𝑡)

𝑁𝐷𝐺

𝑖=1

+∑𝑃𝑒𝑥𝑡(𝑘,𝑡)

𝑁𝑘

𝑘=1

+ ∑ 𝑷𝑷𝑽(𝒋,𝒕,𝒔)

𝑁𝑃𝑉−𝐷𝐺

𝑗=1

+∑(𝑷𝑬𝑺𝑺−(𝒆,𝒕,𝒔) −𝑷𝑬𝑺𝑺+(𝒆,𝒕,𝒔))

𝑁𝑒

𝑒=1

+∑(𝑷𝑬𝑽−(𝒗,𝒕,𝒔) −𝑷𝑬𝑽+(𝒗,𝒕,𝒔))

𝑁𝑣

𝑣=1

+∑(𝑷𝒄𝒖𝒓𝒕(𝒍,𝒕,𝒔) − 𝑷𝒍𝒐𝒂𝒅(𝒍,𝒕,𝒔))

𝑁𝐿

𝑙=1

+ ∑(𝑷𝒃𝒖𝒚(𝒎,𝒕) − 𝑷𝒔𝒆𝒍𝒍(𝒎,𝒕,𝒔)) +

𝑁𝑚

𝑚=1

∑𝑃𝑖𝑚𝑏+(𝑖,𝑡,𝑠)

𝑁𝐷𝐺

𝑖=1

−∑𝑃𝑖𝑚𝑏−(𝑙,𝑡,𝑠)

𝑁𝐿

𝑙=1

= 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑡, ∀𝑠 

 

(10) 

 

                                                           
1 See nomenclature at the end of this subsection. 
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It can be noticed that the balance constraint must be satisfied for all the possible uncertain scenarios 𝑠, which 

require solutions that are robust to the variations of uncertain variables/parameters. 

C) Uncertainty representation  
We assume that a correct set of scenarios that simulate real-world conditions can be generated considering 

forecast and associated errors based on historical data or previous experiences. The uncertainty in this problem 

comes from: i) PV renewable sources, ii) load profiles, iii) EVs’ scheduling, and iv) market prices for wholesale and 

local markets. 

We apply the technique for scenario generation (and scenario reduction) used in [1]. In a first step, a large number 

of scenarios is generated by Monte Carlo Simulation (MCS). The MCS uses the probability distribution function of 

the forecasted errors (which can be obtained from historical data) to create a number of scenarios according to: 

𝑋𝑠(𝑡) = 𝑥
𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡(𝑡) + 𝑥𝑒𝑟𝑟𝑜𝑟,𝑠(𝑡) (11) 

Where 𝑥𝑒𝑟𝑟𝑜𝑟,𝑠 is a normal distribution function with zero-mean and standard deviation 𝜎, and 𝑥𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡(𝑡) is the 

forecasted valued of variable 𝑥 at time 𝑡. To simplify, all forecast errors for the uncertain inputs are represented by 

a normal distribution function. In a second step, a standard scenario reduction technique is applied that excludes 

scenarios with low probabilities and combines those that are close to each other in terms of statics metrics (for a 

complete description of these techniques see [1]).  

For the competition, we created 5000 scenarios for PV generation, load consumption and market price variations. 

For the PV uncertainty generation, an error of 15% was used. Regarding the load forecasted and market prices, 

errors of 10% and 20% were used respectively. In a second step, the number of scenarios was reduced to 100 using 

specialized reduction techniques [7]. Regarding EVs trips, we have randomly generated 100 different forecast 

scheduling for each scenario using the tools in [8]. 

Participants should design their algorithms to find solutions with optimal fitness and robust behavior over the 100 

provided scenarios. 

Nomenclature 
Indices Parameters 

𝑖 Distributed generation (DG) units 𝑁𝐷𝐺  Number of DG 

𝑗 PV units 𝑁𝑃𝑉 Number of PV 

𝑘 External suppliers 𝑁𝑘 Number of external suppliers 

𝑒 Energy storage systems (ESSs) 𝑁𝑒 Number of ESSs 

𝑣 Electric vehicles (EVs) 𝑁𝑣 Number of EVs 

𝑙 Loads 𝑁𝐿 Number of loads 

𝑚 Markets 𝑁𝑚 Number of markets 

𝑠 Scenarios 𝑁𝑠 Number of scenarios 

𝑡 Periods 𝑇 Number of periods 

Variables 𝐶𝐷𝐺 Generation cost of DG (m.u./kWh) 

𝑃𝐷𝐺 Active power generation (kW) 𝐶𝑒𝑥𝑡 Cost of external supplier (m.u./kWh) 

𝑃𝑒𝑥𝑡 External supplied power (kW) 𝐶𝑃𝑉 Cost of PV generation (m.u./kWh) 

𝑃𝐸𝑆𝑆−  Discharge power of ESS (kW) 𝐶𝐸𝑆𝑆−  Discharging cost of ESS (m.u./kWh) 

𝑃𝐸𝑉−  Discharge power of EV (kW) 𝐶𝐸𝑉− Discharging cost of EV (m.u./kWh) 

𝑃𝐸𝑆𝑆+  Charge power of ESS (kW) 𝐶𝑐𝑢𝑟𝑡 Load curtailment cost (m.u./kWh) 

𝑃𝐸𝑉+  Charge power of EV (kW) 𝐶𝑖𝑚𝑏 Grid imbalance cost (m.u./kWh) 

𝑃𝑐𝑢𝑟𝑡  Power reduction of load (kW)   

𝑃𝑖𝑚𝑏− Non-supplied power for load (kW) 𝜋(𝑠) Probability of scenario 𝑠 

𝑃𝑖𝑚𝑏+ Exceeded power of DG unit (kW) 𝑃𝑃𝑉 Photovoltaic generation (kW) 

𝑃𝑏𝑢𝑦 Power buy to the market (kW) 𝑃𝑙𝑜𝑎𝑑 Forecasted load 

𝑃𝑠𝑒𝑙𝑙 Power sell to the market (kW) 𝑀𝑃 Electricity market price (m.u./kWh) 

𝑥𝐷𝐺 Binary variable for DG status   
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